YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models.

نویسندگان

  • Shiow-Lin Pan
  • Jih-Hwa Guh
  • Chieh-Yu Peng
  • Shih-Wei Wang
  • Ya-Ling Chang
  • Fong-Chi Cheng
  • Jau-Hsiang Chang
  • Sheng-Chu Kuo
  • Fang-Yu Lee
  • Che-Ming Teng
چکیده

Angiogenesis is a process that involves endothelial cell proliferation, migration, invasion, and tube formation, and inhibition of these processes has implications for angiogenesis-mediated disorders. The purpose of this study was to evaluate the antiangiogenic efficacy of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] in well characterized in vitro and in vivo systems. YC-1 inhibited the ability of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in a dose-dependent manner to induce proliferation, migration, and tube formation in human umbilical vascular endothelial cells; these outcomes were evaluated using [3H]thymidine incorporation, transwell chamber, and Matrigel-coated slide assays, respectively. YC-1 inhibited VEGF- and bFGF-induced p42/p44 mitogen-activated protein kinase and Akt phosphorylation as well as protein kinase C alpha translocation using Western blot analysis. The effect of YC-1 on angiogenesis in vivo was evaluated using the mouse Matrigel implant model. YC-1 administered orally in doses of 1 to 100 mg/kg/day inhibited VEGF- and bFGF-induced neovascularization in a dose-dependent manner over 7 days. These results indicate that YC-1 has antiangiogenic activity at very low doses. Moreover, in transplantable murine tumor models, YC-1 administered orally displayed a high degree of antitumor activity (treatment-to-control life span ratio > 175%) without cytotoxicity. YC-1 may be useful for treating angiogenesis-dependent human diseases such as cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The inhibitory mechanism of YC-1, a benzyl indazole, on smooth muscle cell proliferation: an in vitro and in vivo study.

The pharmacological mechanisms of a synthetic compound 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1) in preventing smooth muscle cell proliferation remains to be elucidated. The present study was aimed to explore the effects of YC-1 on certain molecules responsible for cell proliferation, including transforming growth factor (TGF)-beta1, soluble guanylyl cyclase (sGC) and focal adhesio...

متن کامل

YC-1 exerts inhibitory effects on MDA-MB-468 breast cancer cells by targeting EGFR in vitro and in vivo under normoxic condition

3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), the hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor, suppresses tumor proliferation and metastasis by down-regulating HIF-1α expression under hypoxic conditions. Our previous studies demonstrated that YC-1 inhibited breast cancer cell proliferation under normoxic conditions. In the current study, we investigated the targets of YC-1 and...

متن کامل

The anticancer agent YC-1 suppresses progestin-stimulated VEGF in breast cancer cells and arrests breast tumor development

Recent epidemiological studies show that postmenopausal women taking estrogen-progestin hormone replacement therapy (HRT) have a higher risk of breast cancer than women on an HRT regimen lacking progestins. This may be related to the observation that progestin-treated breast cancer cells express and secrete high levels of vascular endothelial growth factor (VEGF), a potent angiogenic factor tha...

متن کامل

Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules.

Although platelets have been implicated in the pathogenesis of vascular diseases, little is known about factors that regulate interactions between platelets and the vessel wall under physiological conditions. The objectives of this study were to 1) define the contribution of nitric oxide (NO) to endotoxin (lipopolysaccharide, LPS)-induced platelet-endothelial cell (P/E) adhesion in murine intes...

متن کامل

Mechanism of hif-1α mediated hypoxia-induced permeability changes in bladder endothelial cells

This study aimed to investigate the mechanism of hypoxia-inducible factor-1 alpha (HIF-1α) mediated hypoxia-induced permeability changes in bladder endothelial cells. Models of in vitro hypoxic cell culture of bladder cancer, bladder cancer cells with low HIF-1α expression and HIF-1α RNA interference (RNAi) expression vector were established. Western blot and reverse transcription polymerase ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 314 1  شماره 

صفحات  -

تاریخ انتشار 2005